Excel in Key Subjects

AQA Physics assessment

Paper 2

Topic 5 - Forces

Name:

Class:

Time allowed: 50 minutes
Total marks: 50

Marks obtained:

Grade:

Marked by:

Data/formulae sheet

1	pressure due to a column of liquid $=\text { height of column } \times \text { density of liquid } \times \text { gravitational field strength }(\mathrm{g})$	$p=h \rho g$
2	$(\text { final velocity })^{2}-(\text { initial velocity })^{2}=2 \times$ acceleration \times distance	$v^{2}-u^{2}=2 a s$
3	$\text { force }=\frac{\text { change in momentum }}{\text { time taken }}$	$F=\frac{m \Delta v}{\Delta t}$
4	elastic potential energy $=0.5 \times$ spring constant $\times(\text { extension })^{2}$	$E_{e}=\frac{1}{2} k e^{2}$
5	change in thermal energy $=$ mass \times specific heat capacity \times temperature change	$\Delta E=m c \Delta \theta$
6	$\text { period }=\frac{1}{\text { frequency }}$	
7	$\text { magnification }=\frac{\text { image height }}{\text { object height }}$	
8	force on a conductor (at right angles to a magnetic field) carrying a current $=$ magnetic flux density \times current \times length	$F=B I l$
9	thermal energy for a change of state $=$ mass \times specific latent heat	$E=m L$
10	$\frac{\text { potential difference across primary coil }}{\text { potential difference across secondary coil }}=\frac{\text { number of turns in primary coil }}{\text { number of turns in secondary coil }}$	$\frac{V_{p}}{V_{s}}=\frac{n_{p}}{n_{s}}$
11	potential difference across primary coil \times current in primary coil $=$ potential difference across secondary coil \times current in secondary coil	$V_{p} I_{p}=V_{s} I_{s}$
12	For gases: pressure \times volume $=$ constant	$p \mathrm{~V}=$ constant

Q3.

(a) The diagram shows an aircraft and the horizontal forces acting on it as it moves along a runway. The resultant force on the aircraft is zero.

(i) What is meant by the term resultant force?
\qquad
\qquad
(ii) Describe the movement of the aircraft when the resultant force is zero.
\qquad
\qquad
(b) The aircraft has a take-off mass of 320000 kg . Each of the 4 engines can produce a maximum force of 240 kN .

Calculate the maximum acceleration of the aircraft.
Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
Acceleration $=$ \qquad
(c) As the aircraft moves along the runway to take off, its acceleration decreases even though the force from the engines is constant.

Explain why.
\qquad
\qquad
\qquad
\qquad

Q4.
(a) In any collision, the total momentum of the colliding objects is usually conserved.
(i) What is meant by the term 'momentum is conserved'?
\qquad
\qquad
(ii) In a collision, momentum is not always conserved.

Why?
\qquad
\qquad
(b) The diagram shows a car and a van, just before and just after the car collided with the van.

(i) Use the information in the diagram to calculate the change in the momentum of the car.

Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
\qquad
Change in momentum $=$
(ii) Use the idea of conservation of momentum to calculate the velocity of the van when it is pushed forward by the collision.

Show clearly how you work out your answer.

Velocity =

\qquad m / s forward

Q5.
A train travels from town \mathbf{A} to town \mathbf{B}.
Figure 1 shows the route taken by the train.
Figure 1 has been drawn to scale.
Figure 1

(a) The distance the train travels between \mathbf{A} and \mathbf{B} is not the same as the displacement of the train.

What is the difference between distance and displacement?
\qquad
\qquad
\qquad
(b) Use Figure 1 to determine the displacement of the train in travelling from \mathbf{A} to \mathbf{B}. Show how you obtain your answer.
\qquad
\qquad
Displacement $=$ \qquad km
(c) There are places on the journey where the train accelerates without changing speed.

Explain how this can happen.
\qquad
\qquad
\qquad
\qquad
(d) Figure 2 shows how the velocity of the train changes with time as the train travels along a straight section of the journey.

Figure 2

Estimate the distance travelled by the train along the section of the journey shown in Figure 2.

To gain full marks you must show how you worked out your answer.
\qquad m

Q6.
The diagram shows how the thinking distance and braking distance of a car add together to give the stopping distance of the car.

(a) Use words from the box to complete the sentence.

distance	energy	force	time

The stopping distance is found by adding the distance the car travels during the driver's reaction \qquad and the distance the car travels under the braking \qquad .
(b) Which one of the following would not increase the thinking distance?

Tick (\checkmark) one box.

The car driver being tired.

The car tyres being badly worn.

The car being driven faster.

(c) The graph shows how the braking distance of a car changes with the speed of the car.
The force applied to the car brakes does not change.

(i) What conclusion about braking distance can be made from the graph?
\qquad
\qquad
\qquad
\qquad
(ii) The graph is for a car driven on a dry road.

Draw a line on the graph to show what is likely to happen to the braking distance at different speeds if the same car was driven on an icy road.
(d) A local council has reduced the speed limit from 30 miles per hour to 20 miles per hour on a few roads. The reason for reducing the speed limit was to reduce the number of accidents.
(i) A local newspaper reported that a councillor said:
"It will be much safer because drivers can react much faster when driving at 20 miles per hour than when driving at 30 miles per hour."

This statement is wrong. Why?
\qquad
\qquad
(ii) The local council must decide whether to introduce the lower speed limit on a lot more roads.

What evidence should the local council collect to help make this decision?
\qquad
\qquad
\qquad
\qquad

Q7.

A student suspended a spring from a laboratory stand and then hung a weight from the spring.

Figure 1 shows the spring before and after the weight is added.
Figure 1

(a) Measure the extension of the spring shown in Figure 1.

Extension $=$ \qquad mm
(b) The student used the spring, a set of weights and a ruler to investigate how the extension of the spring depended on the weight hanging from the spring.

Before starting the investigation the student wrote the following prediction:
The extension of the spring will be directly proportional to the weight hanging from the spring.

Figure 2 shows how the student arranged the apparatus.
Figure 2

Before taking any measurements, the student adjusted the ruler to make it vertical.
Explain why adjusting the ruler was important.
\qquad
\qquad
\qquad
\qquad
(c) The student measured the extension of the spring using a range of weights.

The student's data is shown plotted as a graph in Figure 3.
Figure 3

What range of weight did the student use?
\qquad
(d) Why does the data plotted in Figure 3 support the student's prediction?
\qquad
\qquad
(e) Describe one technique that you could have used to improve the accuracy of the measurements taken by the student.
\qquad
\qquad
\qquad
\qquad
(f) The student continued the investigation by increasing the range of weights added to the spring.

All of the data is shown plotted as a graph in Figure 4.
Figure 4

At the end of the investigation, all of the weights were removed from the spring.
What can you conclude from Figure 4 about the deformation of the spring?
\qquad
\qquad
Give the reason for your conclusion.

End of the test

